Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

 

Философия науки

доступно

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта

Научная революция XVI-XVII вв.: формирование основ математического естествознания.

Любые студенческие работы по приятным ценам. Постоянным клиентам - скидки! Оставьте заявку и мы ответим Вам по стоимости работ в течении 30 минут!

Дата начала науки:

Первая дата – 2000 лет до нашей эры (Вавилон: астрономия).

Вторая дата – исходя из возникновения первой научной картины мира (Греция, время Аристотеля).

17 век – появление экспериментальной науки.

Коперник порвал со старыми взглядами и предложил новую модель мира.

Считалось, что вокруг двигающихся предметов спутники существовать не могут, то есть: раз у Земли есть спутник, то Земля неподвижна.

Эксперимент позволяет проверить наше предположение. Эксперимент строится по заранее определённому плану (а наблюдение, как правило, не строиться на плане).

Галилео Галилей (1564-1642 гг.)

Итальянский учёный (профессор математики).

Философии (во время Галилея) – общее знание о мире.

«Диалоги о двух системах мировоззрения»: три персонажа (все имена начинаются на букву «С»), которые беседуют три дня. Два из них выражают точку зрения Галилея, а один – Аристотеля.

Вывел Закон падения Галилея: S = 1/2 * g * t^2.

Вывел Принцип инерции (движение неотделимо от покоя).

Галилей – первый учёный современного типа. Земля находится в центре мира (так как тело тяжёлое, оно будет лежать в центре), поэтому все тяжёлые тела стремятся к центру мира (к ядру Земли).

{Это не Галилей: Прилив происходит из-за притяжения Луны. Хотя сила притяжения луны в 1 000 000 раз меньше силы притяжения Земли. Просто вода получается легче в точке, которая ближе к Луне, чем в точках, которые дальше.}

 

Галилей не всегда проводил эксперименты и подтверждал свои предположения. Раньше вводили пятый элемент – эфир – для проведения различий между духовным миром и реальным. Планеты были эфирными телами, а не тяжёлыми (как сейчас).

Позже физики понятие «эфир» заменили на «вакуум».

 

Научная революция возникла в 18 веке.

Кеплер И. (1570-1631 гг.)

Философия – бедная наука, за неё не платят. Астрологам платят много (они были при императорах и пр.).

Кеплер астролог и учёный.

Открыл три закона Кеплера, управляющие движением планет.

Он написал в 1596 году «Космографическая тайна».

1. Планеты двигаются не по кругу, а по овалу (эллипсу).

2. Скорость движения планет переменная.

3. Отношение куба радиуса орбиты к квадрату периода обращения планеты вокруг солнца примерно равно единице.

 

Проблемы (которые остались нерешенными Ньютоном):

1. Телепатия между телами. Одно тело передвинулось (например, планета) на сколько-то метров и другое на тоже расстояние.

2. Связанная с пространством. Может ли пространство (пустота) влиять на движение тел.

Ньютон: силы инерции связаны с движением относительно пространства, а не относительно других тел.

Ньютон, сосредотачивался на решении 2-х проблем (задачи):

Методическое начало натуральной философии (книга издана в 1687 году).

Законы: (1) принцип инерции, (2) что такое сила.

Первая задача: любая наука позволяет отличать истину ото лжи. В механике – это отличать истинные движения предметов от кажущихся таковыми. Это сложно, так как любой предмет движется. Аналогично с промежутками времени (время мы не чувствуем).

Ньютон, начиная с третьей книги, строит систему мира, чтобы выявить, чем управляются движения, которые мы видим.

Метод Ньютона:

Следовал в методологии Ф. Бэкону. Бэкон: научный метод – индукция (лат., наведение). Таблица присутствия (все случаи, где что-то присутствует) и таблица отсутствия (все случаи, похожие на предыдущие, где то же отсутствует, например, тепло). Потом таблица сравнения, выявляется причина этого что-то (тепла; причина тепла: движение + сопротивление).

До этого существовала теория тепла, в которой говорилось, что есть субстанции тепла, которые присутствуют в телах. То есть задача метода: убираем всё, что не является, соответственно, остаётся всё, что является. То есть перебираем причины явления и опровергаем их, доходим до той, которую не можем опровергнуть, она и является причиной.

Кант (1724-1804): «Наука – то же самое, что математика». У них общая логическая форма. Логическая форма науки – синтетическая априори суждений. Математика = наука «чистого созерцания». Математика – синтетическое знание (получается при помощи суждений и интеллекта, она основана на интуиции).

Лейбниц: математика – аналитическое знание (основанное на логике).

Кант: разум без чувств – пуст. Чувства без разума – слепы.

 

Своим творчеством Рене Декарт (1596-1650), французский философ и математик, призван был расчистить почву для постройки новой рациональной культуры и науки. Для этого нужен новый рационалистический Метод, прочным и незыблемым основанием которого должен быть человеческий разум.

В протяженной субстанции, или природе, как считает Декарт, мы можем мыслить ясно и отчетливо только ее величину (что тождественно с протяжением), фигуру, расположение частей, движение. Последнее понимается только как перемещение, ни количественные, ни качественные изменения к нему не относятся.

Наукой же, изучающей величину, фигуры, является геометрия, которая становится универсальным инструментом познания. И перед Декартом стоит задача - преобразовать геометрию так, чтобы с ее помощью можно было бы изучать и движение. Тогда она станет универсальной наукой, тождественной Методу. И создав систему координат, введя представление об одновременном изменении двух величин, из которых одна есть функция (кстати, термина "функция" еще в его терминологии нет) другой, Декарт внес в математику принцип движения. Теперь математика становится формально-рациональным методом, с помощью которого можно "считать" числа, звезды, звуки и т.д., любую реальность, устанавливая в ней меру и порядок с помощью нашего разума.

Французский мыслитель отождествляет пространство (протяженность) с материей (природой), понимая последнюю как непрерывную, делимую до бесконечности. Поэтому и космос у него беспределен. Но идею Дж. Бруно о множественности миров Декарт не разделяет.

Философ понимает движение как относительное, движение и покой равнозначны: тело может являться движущимся относительно одних тел, в то время как относительно других будет оставаться покоящимся. На этом основании он формулирует принцип инерции: тело, раз начав двигаться, продолжает это движение и никогда само собой не останавливается.

Гарантом и для закона инерции (первого закона природы) и для второго закона, утверждающего, что всякое тело стремится продолжать свое движение по прямой, согласно Декарту, выступает Бог-Творец. Третий закон определяет принцип движения сталкивающихся тел. Первый и второй законы признавались в физике Нового времени, третий же был подвергнут резкой критике.

Согласно Декарту, задача науки - вывести объяснение всех явлений природы из полученных начал, в которых нельзя усомниться, но устанавливаются эти начала философией. Поэтому его часто упрекают в априорном характере научных положений.

Декарт отмечает, что представление о мире, которое дает наука, отличается от реального природного мира, поэтому научные знания гипотетичны. Признание вероятностного их характера некоторые исследователи видят в нежелании Декарта навлечь на себя подозрение в подрыве религиозной веры. Но была и теоретическая причина, как считает П. П. Гайденко: "И причиной этой, как ни парадоксально, является божественное всемогущество. Какая же тут, казалось бы, может быть связь? А между тем простая: будучи всемогущим, Бог мог воспользоваться бесконечным множеством вариантов для создания мира таким, каким мы его теперь видим. А потому тот вариант, который предложен Декартом, является только вероятностным, - но в то же время он равноправен со всеми остальными вариантами, если только он пригоден для объяснения встречающихся в опыте явлений".

Нигде в предшествующем знании не существовало понимания природы как сложной системы механизмов, всемогущий Творец никогда не выступал в образе Бога-Механика, поэтому Декарту важно показать, что Бог владеет бесконечным арсеналом средств для построения машины мира, и хотя человеку не дано постичь, какие именно из средств использовал Бог, строя мир, человек, создавая науку, конструирует мир так, чтобы между ним и реальным миром имелось сходство. Вот поэтому предлагаемый в науке вариант объяснения мира носит гипотетический характер, но отнюдь не теряет своей объяснительной силы.

Сильное впечатление на современников произвела теория вихрей (космогоническая гипотеза) Декарта: мировое пространство заполнено особым легким, подвижным веществом, способным образовывать гигантские вихри. Хотя космогоническая гипотеза Декарта была отвергнута, но остались бессмертными его достижения в области математики: введение системы координат, алгебраических обозначений, понятия переменной, создание аналитической геометрии. Важна была также идея развития, содержащаяся в теории вихрей, и идея деления "корпускул" до бесконечности, что впоследствии было подтверждено атомной физикой.

Научную программу, которую создал Исаак Ньютон (1643- 1727), английский физик, он назвал "экспериментальной философией". В соответствии с ней исследование природы должно опираться на опыт, который затем обобщается при помощи "метода принципов", смысл которого заключается в следующем: проведя наблюдения, эксперименты, с помощью индукции вычленить в чистом виде связи явлений внешнего мира, выявить фундаментальные закономерности, принципы, которые управляют изучаемыми процессами, осуществить их математическую обработку и на основе этого построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов.

Ньютон создал основы классической механики как целостной системы знаний о механическом движении тел, сформулировал три ее основных закона, дал математическую формулировку закона всемирного тяготения, обосновал теорию движению небесных тел, определил понятие силы, создал дифференциальное и интегральное исчисление как язык описания физической реальности, выдвинул предположение о сочетании корпускулярных и волновых представлений о природе света. Механика Ньютона стала классическим образцом дедуктивной научной теории.

Также как и Ньютон, немецкий ученый Готфрид Вильгельм Лейбниц (1646-1716) был убежден, что все в мире существующее должно быть объяснено с помощью исключительно механических начал. Природа - это совершенный механизм, и все - от неорганического до живых организмов - создано гениальным механиком Богом. И познаваться этот механизм может с помощью механических причин и законов.

Отметим основные научные достижения Лейбница (вопреки его механистическому материализму вначале, а затем объективному идеализму - особенно в "Монадологии"):

1.                 Открыл (одновременно с Ньютоном) дифференциальное и интегральное исчисления, что положило начало новой эре в математике.

2.                 Стал родоначальником математической логики и одним из создателей счетно-решающих устройств. В связи с этим основатель кибернетики Н. Винер назвал его своим предшественником и вдохновителем.

3.                 В вопросах физики и механики подчеркивал важную роль наблюдений и экспериментов, был одним из первых ученых, предвосхитивших закон сохранения и превращения энергии.

4.                 В трактате "Протагея" одним из первых пытался научно истолковать вопросы происхождения и эволюции Земли.

5.                 Изобрел специальные насосы для откачки подземных вод и создал другие оригинальные технические новшества.

6.                 Обратил внимание на теорию игр.

7.                 Указал на взаимосвязи, развитие и "тонкие опосредования" между растительным, животным и человеческим "царствами".

8.                 Ратовал за широкое применение научных знаний в практике.

В Новое время сложилась механическая картина мира, утверждающая: вся Вселенная - совокупность большого числа неизменных и неделимых частиц, перемещающихся в абсолютном пространстве и времени, связанных силами тяготения, подчиненных законам классической механики; природа выступает в роли простой машины, части которой жестко детерминированы; все процессы в ней сведены к механическим.

Механическая картина мира сыграла во многом положительную роль, дав естественнонаучное понимание многих явлений природы. Таких представлений придерживались практически все выдающиеся мыслители XVII в. - Галилей, Ньютон, Лейбниц, Декарт. Для их творчества характерно построение целостной картины мироздания. Учеными не просто ставились отдельные опыты, они создавали натурфилософские системы, в которых соотносили полученные опытным путем знания с существующей картиной мира, внося в последнюют необходимые изменения. Без обращения к фундаментальным научным основаниям считалось невозможным дать полное объяснение частным физическим явлениям. Именно с этих позиций начинало формироваться теоретическое естествознание, и в первую очередь - физика.

В основе механистической картины мира лежит метафизический подход к изучаемым явлениям природы как не связанным между собой, неизменным и не развивающимся. Ярким примером использования его является классификация животного мира, изложенная известным шведским ученым-натуралистом Карлом Линнеем (1707-1778) в работе "Система природы". Достоинством ее является бинарная система обозначения растений и животных (где первое слово обозначает род, а второе - вид), дошедшая до настоящего времени. Расположив растения и животных в порядке усложнения их строения, ученый тем не менее не усмотрел изменчивости видов, считая их неизменными, созданными Богом.

Успешное развитие классической механики привело к тому, что среди ученых возникло стремление объяснить на основе ее законов все явления и процессы действительности. В конце XVIII в. - первой половине XIX в. намечается тенденция использования научных знаний в производстве, причиной чему было развитие машинной индустрии, пришедшее на смену мануфактурному производству, что вызвало развитие технических наук. "Технические науки не являются простым продолжением естествознания, прикладными исследованиями, реализующими концептуальные разработки фундаментальных естественных наук. В развитой системе технических наук имеется свой слой как фундаментальных, так и прикладных знаний".

Классическим примером первых научно-технических знаний служит сконструированные X. Гюйгенсом механические часы, воплотившие теорию колебаний маятника в созданное техническое решение. Возникшие на стыке естествознания и производства технические науки проявляют свои специфические черты, отличающие их от естественнонаучного знания.

Начиная с создания немецким мыслителем Иммануилом Кантом (1724-1804) работы "Всеобщая естественная история и теория неба" в естествознание проникают диалектические идеи. Согласно гипотезе, изложенной в данной работе, Солнце, планеты и их спутники возникли из некоторой первоначальной бесформенной туманной массы, которая заполняла мировое пространство. Под действием притяжения из частиц образовывались отдельные сгущения, которые становились центрами притяжения, из одного такого центра образовалось Солнце, вокруг которого, двигаясь по кругу, расположились частицы в виде круговых туманностей. В них стали образовываться зародыши планет, которые начали вращаться вокруг своей оси. Вследствие трения частиц, из которых они образовались, Солнце и планеты сначала разогрелись, а потом начали остывать.

Почти через 40 лет после Канта французский математик и астроном П. Лаплас (1749-1847) выдвинул идеи, которые дополнили и развили кантовскую гипотезу, и в обобщенном виде эта космогоническая гипотеза Канта - Лапласа просуществовала почти 100 лет.

В XIX в. диалектические идеи проникают в геологию и биологию. На смену теории катастрофизма, предложенной французским естествоиспытателем Ж. Кювье (1768-1832), пришла идея геологического эволюционизма английского естествоиспытателя Ч. Лайеля (1797-1875). В теории катастрофизма утверждалось, что отдельные периоды в истории Земли заканчиваются мировыми катастрофами, в результате которых старые виды растений и животных погибают и на смену им рождаются новые, ранее не существовавшие. Лайель же доказал, что для объяснения изменений, происшедших в течение геологической истории, нет необходимости прибегать к представлениям о катастрофах, а достаточно допустить длительный срок существования Земли.

В области биологии эволюционные идеи высказывал французский естествоиспытатель Ж. Б. Ламарк (1744-1829) в "Философии зоологии" и Ч. Р. Дарвин (1809-1882), создавший знаменитую работу "Происхождение видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь" (1859). Согласно теории Дарвина, виды животных, растений с их целесообразной организацией возникли в результате отбора и накопления качеств, полезных для организмов в их борьбе за существование в данных условиях. Г. Менделем (1822-1884) в работе "Опыты над растительными гибридами", объединившей биологический и математический анализ, было дано достаточно адекватное объяснение изменчивости и наследственности свойств организмов, что положило начало генетике. Им было выделено важнейшее свойство генов - дискретность, сформулирован принцип независимости комбинирования генов при скрещивании. Но до 1900 г. работа Менделя оставалась неизвестной научной общественности.

В 30-х г. XIX в. ботаником М. Я. Шлейденом (1804-1881) и биологом Т. Шванном (1810-1882) была создана клеточная теория строения растений и живых организмов.

Вплотную подходит к открытию закона сохранения и превращения энергии немецкий врач Ю. Р. Майер (1814-1878), который показал, что химическая, тепловая и механическая энергии могут превращаться друг в друга и являются равноценными. Английский исследователь Д. П. Джоуль (1818- 1889) экспериментально продемонстрировал, что при затрате механической силы получается эквивалентное количество теплоты. Датский инженер Л. А. Кольдинг (1815-1888) опытным путем установил отношение между работой и теплотой, физик Г. Гельмгольц (1821-1894) доказал на основе этого закона невозможность вечного двигателя.

Среди открытий в химии важнейшее место занимает открытие периодического закона химических элементов выдающимся ученым химиком Д. И. Менделеевым (1834-1907).

Эволюционные идеи, нашедшие отражение в биологии, геологии подрывали механическую картину мира. Этому способствовали и исследования в области физики: открытие Ш. Кулоном (1736-1806) закона притяжения электрических зарядов с противоположными знаками, введение английским химиком и физиком М. Фарадеем (1791-1867) понятия электромагнитного поля, создание английским ученым Дж. Максвеллом (1831-1879) математической теории электромагнитного поля. Это привело к созданию электромагнитной картины мира.

В этот же период начинают развиваться и социально-гуманитарные науки. Так, К. Марксом (1818-1883) создается экономическая теория, на основе которой несколько позднее Г. Зиммель (1858-1918) формулирует философию денег, изложенную в одноименной работе. "Возникновение социально-гуманитарных наук завершило формирование науки как системы дисциплин, охватывающих все основные сферы мироздания: природу, общество и человеческий дух. Наука приобрела привычные для нас черты универсальности, специализации и междисциплинарных связей. Экспансия науки на все новые предметные области, расширяющееся технологическое и социально-регулятивное применение научных знаний, сопровождались изменением институционального статуса науки". Дальнейшее развитие науки вносит существенные отклонения от классических ее канонов.

 

Яндекс.Метрика