Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

 

Философия науки

доступно

  • Increase font size
  • Default font size
  • Decrease font size

Особенности теоретического уровня исследований. Теоретические модели

Любые студенческие работы по приятным ценам. Постоянным клиентам - скидки! Оставьте заявку и мы ответим Вам по стоимости работ в течении 30 минут!

Теоретические модели в структуре теории. Своеобразная единица организации теоретических знаний – это теоретическая модель и формулируемый относительно нее теоретический закон. В качестве элементов теоретической модели выступают абстрактные объекты (теоретические конструкты), которые находятся в строго определенных связях и отношениях друг с другом.

Теоретические законы непосредственно формулируются относительно абстрактных объектов теоретической модели. Они могут быть применены для описания реальных ситуаций опыта лишь в том случае, если модель обоснована в качестве выражения существенных связей действительности, проявляющихся в таких ситуациях.

В развитых в теоретическом отношении дисциплинах, применяющих количественные методы исследования (таких, как физика), законы теории формулируются на языке математики. Признаки абстрактных объектов, образующих теоретическую модель, выражаются в форме физических величин, а отношения между этими признаками – в форме связей между величинами, входящими в уравнения. Применяемые в теории математические формализмы получают свою интерпретацию благодаря их связям с теоретическими моделями.

Теоретические модели не являются чем-то внешним по отношению к теории. Они входят в ее состав. Их следует отличать от аналоговых моделей, которые служат средством построения теории, ее своеобразными строительными лесами, но целиком не включаются в созданную теорию. Например, аналоговые гидродинамические модели трубок с несжимаемой жидкостью, вихрей в упругой среде и т.д., применявшиеся при построении Максвеллом теории электромагнитного поля, были "строительными лесами", но модели, характеризующие процессы электромагнетизма как взаимосвязи электрических и магнитных полей в точке, зарядов и электрических токов в точке, – были составной частью теории Максвелла. Основу теоретических моделей, относительно которых формулируются законы и которые обязательно входят в состав теории, назовем их теоретическими схемами. Они действительно являются схемами исследуемых в теории объектов и процессов, выражая их существенные связи.

В основании развитой теории можно выделить фундаментальную теоретическую схему, которая построена из небольшого набора базисных абстрактных объектов, конструктивно независимых друг от друга, и относительно которой формулируются фундаментальные теоретические законы.

Например, в ньютоновской механике ее основные законы формулируются относительно системы абстрактных объектов: "материальная точка", "сила", "инерциальная пространственно-временная система отсчета". Связи и отношения перечисленных объектов образуют теоретическую модель механического движения, изображающую механические процессы как перемещение материальной точки по континууму точек пространства инерциальной системы отсчета с течением времени и как изменение состояния движения материальной точки под действием силы.

Аналогичным образом в классической электродинамике сущность электромагнитных процессов представлена посредством теоретической модели, которая образована отношениями конструктов "электрическое поле в точке", "магнитное поле в точке" и "ток в точке". Выражением этих отношений являются фундаментальные законы теории электромагнитного поля.

Кроме фундаментальной теоретической схемы и фундаментальных законов в состав развитой теории входят частные теоретические схемы и законы. В механике это – теоретические схемы и законы колебания, вращения тел, соударения упругих тел, движение тела в поле центральных сил и т.п. В классической электродинамике к слою частных моделей и законов, включенных в состав теории, принадлежат теоретические схемы электростатики и магнитостатики, кулоновского взаимодействия зарядов, магнитного действия тока, электромагнитной индукции, постоянного тока и т.д.

Когда эти частные теоретические схемы включены в состав теории, они подчинены фундаментальной, но по отношению друг к другу могут иметь независимый статус. Образующие их абстрактные объекты специфичны. Они могут быть сконструированы на основе абстрактных объектов фундаментальной теоретической схемы и выступать как их своеобразная модификация. Различию между фундаментальной и частными теоретическими схемами в составе развитой теории соответствует различие между ее фундаментальными законами и их следствиями.

Как уже отмечалось, частные теоретические схемы и связанные с ними уравнения могут предшествовать развитой теории. Более того, когда возникают фундаментальные теории, рядом с ними могут существовать частные теоретические схемы, описывающие эту же область взаимодействия, но с позиций альтернативных представлений. Так, например, обстояло дело с фарадеевскими моделями электромагнитной и электростатической индукции. Они возникли в период, когда создавался первый вариант развитой теории электричества и магнетизма – электродинамика Ампера. Это была достаточно развитая математизированная теория, которая описывала и объясняла явления электричества и магнетизма с позиций принципа дальнодействия. Что же касается теоретических схем, предложенных Фарадеем, то они базировались на альтернативной идее – близкодействия.

Нелишне подчеркнуть, что законы электростатической и электромагнитной индукции были сформулированы Фарадеем в качественном виде, без применения математики. Их математическая формулировка была найдена позднее, когда была создана теория электромагнитного поля. При построении этой теории фарадеевские модели были видоизменены и включены в ее состав.

Это обстоятельство характерно для судеб любых частных теоретических схем, ассимилируемых развитой теорией. Они редко сохраняются в своем первоначальном виде, а чаще всего трансформируются и только благодаря этому становятся компонентом развитой теории.

Итак, строение развитой естественно-научной теории можно изобразить как сложную, иерархически организованную систему теоретических схем и законов, где теоретические схемы образуют своеобразный внутренний скелет теории.

Развертывание теорий. Функционирование теорий предполагает их применение к объяснению и предсказанию опытных фактов. Чтобы применить к опыту фундаментальные законы развитой теории, из них нужно получить следствия, сопоставимые с результатами опыта. Вывод таких следствий характеризуется как развертывание теории.

Каким же образом осуществляется такое развертывание? Ответ на этот вопрос во многом зависит от того, как понимается строение теории, насколько глубоко выявлена ее содержательная структура.

Долгое время в логико-методологической литературе доминировало представление о теории как гипотетико-дедуктивной системе. Структура теории рассматривалась по аналогии со структурой формализованной математической теории и изображалась как иерархическая система высказываний, где из базисных утверждений верхних ярусов строго логически выводятся высказывания нижних ярусов вплоть до высказываний, непосредственно сравнимых с опытными фактами. Правда, затем эта версия была смягчена и несколько модифицирована, поскольку выяснилось, что в процессе вывода приходится уточнять некоторые положения теории, вводить в нее дополнительные допущения.

При рассмотрении теории только с формальной стороны, как системы высказываний, ответить объяснить необходимость ввода дополнительных допущений невозможно. Но если обратиться к анализу содержательной структуры теории, если учесть, что теоретические высказывания вводятся относительно абстрактных объектов, связи и отношения которых составляют смысл теоретических высказываний, то тогда обнаруживаются новые особенности строения и функционирования теории.

Иерархической структуре высказываний соответствует иерархия взаимосвязанных абстрактных объектов. Связи же этих объектов образуют теоретические схемы различного уровня. И тогда развертывание теории предстает не только как оперирование высказываниями, но и как мысленные эксперименты с абстрактными объектами теоретических схем.

Теоретические схемы играют важную роль в развертывании теории. Вывод из фундаментальных уравнений теории их следствий (частных теоретических законов) осуществляется не только за счет формальных математических и логических операций над высказываниями, но и за счет содержательных приемов – мысленных экспериментов с абстрактными объектами теоретических схем, позволяющих редуцировать фундаментальную теоретическую схему к частным. Описанная процедура вывода в своих основных чертах универсальна и используется при развертывании различных теорий эмпирических наук.

При этом эмпирическая интерпретация достигается за счет особого отображения теоретических схем на объекты тех экспериментально-измерительных ситуаций, на объяснение которых претендует модель. Процедуры отображения состоят в установлении связей между признаками абстрактных объектов и отношениями эмпирических объектов. Описанием этих процедур выступают правила соответствия. Они составляют содержание операциональных определений величин, фигурирующих в теории. Такие определения имеют двухслойную структуру, включающую: 1) описание идеализированной процедуры измерения (измерение в рамках мысленного идеализированного эксперимента) и 2) описание приемов построения данной процедуры как идеализации реальных экспериментов и измерений, обобщаемых в теории. Например, электрическая напряженность в точке E в классической электродинамике операционально определяется через описание следующего мысленного эксперимента: предполагается, что в соответствующую точку поля вносится точечный пробный заряд и импульс, приобретенный данным зарядом, служит мерой электрической напряженности поля в данной точке. Идеализации, которые используются в этом мысленном эксперименте, обосновываются в качестве выражения существенных особенностей реальных опытов электродинамики. В частности, точечный пробный заряд обосновывается как идеализация, опирающаяся на особенности реальных экспериментов кулоновского типа. В этих экспериментах можно уменьшать объем заряженных тел и варьировать величину зарядов, сосредоточенных в объеме каждого тела. На этой основе можно добиться того, чтобы заряд, вносимый в поле действия сил другого заряда, оказывал на него пренебрежимо малое воздействие. Идеализирующие допущения, что заряд, по отдаче которого обнаруживается поле, сосредоточен в точке и не оказывает никакого обратного воздействия на поле, вводит представление о точечном пробном заряде.

Фундаментальные уравнения теории приобретают смысл и статус законов благодаря отображению на фундаментальную теоретическую схему. Но было бы большим упрощением считать, что таким образом обеспечивается смысл и теоретических следствий, выводимых из фундаментальных уравнений. Чтобы обеспечить такой смысл, нужно еще уметь конструировать на основе фундаментальной теоретической схемы частные теоретические схемы. Нетрудно, например, установить, что математические выражения для законов Ампера, БиоСавара и т.д., выведенные из уравнений Максвелла, уже не могут интерпретироваться посредством фундаментальной теоретической схемы электродинамики. Они содержат в себе специфические величины, смысл которых идентичен признакам абстрактных объектов соответствующих частных теоретических схем, в которых векторы электрической, магнитной напряженности и плотности тока в точке замещаются другими конструктами: плотностью тока в некотором объеме, напряженностями поля, взятыми по некоторой конечной пространственной области, и т. д.

Учитывая все эти особенности развертывания теории, можно расценить конструирование частных схем и вывод соответствующих уравнений как порождение фундаментальной теорией специальных теорий (микротеорий). При этом важно различить два типа таких теорий, отличающихся характером лежащих в их основании теоретических схем. Специальные теории первого типа могут целиком входить в обобщающую фундаментальную теорию на правах ее раздела (как, например, включаются в механику модели и законы малых колебаний, вращения твердых тел и т.п.). Специальные теории второго типа лишь частично соотносятся с какой-либо одной фундаментальной теорией. Лежащие в их основании теоретические схемы являются своего рода гибридными образованиями. Они создаются на основе фундаментальных теоретических схем по меньшей мере двух теорий. Примерами такого рода гибридных образований может служить классическая модель абсолютно черного излучения, построенная на базе представлений термодинамики и электродинамики. Гибридные теоретические схемы могут существовать в качестве самостоятельных теоретических образований наряду с фундаментальными теориями и негибридными частными схемами, еще не включенными в состав фундаментальной теории.

Вся эта сложная система взаимодействующих друг с другом теорий фундаментального и частного характера образует массив теоретического знания некоторой научной дисциплины.

Каждая из теорий даже специального характера имеет свою структуру, характеризующуюся уровневой иерархией теоретических схем. В этом смысле разделение теоретических схем на фундаментальную и частные относительно. Оно имеет смысл только при фиксации той или иной теории. Например, гармонический осциллятор как модель механических колебаний, будучи частной схемой по отношению к фундаментальной теоретической схеме механики, вместе с тем имеет базисный фундаментальный статус по отношению к еще более специальным теоретическим моделям, которые конструируются для описания различных конкретных ситуаций механического колебания (таких, например, как вырожденные колебания маятника, затухающие колебания маятника или тела на пружине и т.д.).

При выводе следствий из базисных уравнений любой теории, как фундаментальной, так и специальной (микротеории), исследователь осуществляет мысленные эксперименты с теоретическими схемами, используя конкретизирующие допущения и редуцируя фундаментальную схему соответствующей теории к той или иной частной теоретической схеме.

Специфика сложных форм теоретического знания таких, как физическая теория, состоит в том, что операции построения частных теоретических схем на базе конструктов фундаментальной теоретической схемы не описываются в явном виде в постулатах и определениях теории. Эти операции демонстрируются на конкретных образцах, которые включаются в состав теории в качестве своего рода эталонных ситуаций, показывающих, как осуществляется вывод следствий из основных уравнений теории. Неформальный характер всех этих процедур, необходимость каждый раз обращаться к исследуемому объекту и учитывать его особенности при конструировании частных теоретических схем превращают вывод каждого очередного следствия из основных уравнений теории в особую теоретическую задачу. Развертывание теории осуществляется в форме решения таких задач. Решение некоторых из них с самого начала предлагается в качестве образцов, в соответствии с которыми должны решаться остальные задачи.

Научная теория развивается под воздействием различных стимулов, которые могут быть внешними и внутренними. Внешние стимулы представляют собой обнаруженные в составе теории нерешенные задачи, противоречия и т.п. Как те, так и другие приводят к развитию теории в двух основных формах:

1. Интенсификационная форма развития, когда происходит углубление наших знаний без изменения области применения теории.

2. Экстенсификационная форма развития, когда происходит расширение области применения теории без существенного изменения ее содержания. В таком случае осуществляется экстраполяция теории на вновь открываемые или уже известные явления. Примером этого может служить распространение теории электромагнетизма на область оптических явлений.

В развитии теории могут быть выделены два относительно самостоятельных этапа: эволюционный, когда теория сохраняет свою качественную определенность, и революционный, когда осуществляется ломка ее основных исходных начал, компонентов, математического аппарата и методологии. По существу такой скачек в развитии теории есть создание новой теории. Совершается он тогда, когда возможности старой теории исчерпаны.

 

 

Яндекс.Метрика