Напишем:


✔ Реферат от 200 руб., от 4 часов
✔ Контрольную от 200 руб., от 4 часов
✔ Курсовую от 500 руб., от 1 дня
✔ Решим задачу от 20 руб., от 4 часов
✔ Дипломную работу от 3000 руб., от 3-х дней
✔ Другие виды работ по договоренности.

Узнать стоимость!

Не интересно!

 

Философия науки

доступно

  • Increase font size
  • Default font size
  • Decrease font size

 Возникновение неклассической науки. Кризис в основаниях классической науки и глобальная научная революция в математике, физике и социальных науках

Любые студенческие работы по приятным ценам. Постоянным клиентам - скидки! Оставьте заявку и мы ответим Вам по стоимости работ в течении 30 минут!

Классич. и неклассич. философия - термины, появившиеся из естествознания. Геометрия Евклида, Ньютонова физика считаются классич. В конце 19, нач. 20вв. наблюдался отход от классики, создание неклассич. физик, геометрий. Классические теории обладают рядом особенностей, в частности, они оперируют в основном с непрерывными объектами, кроме того, все предельные переходы считаются в силу этого очевидными. В классических теориях есть ряд четко зафиксированных аксиом, из которых вытекают все положения. Все детерминировано. Если физический процесс протекает в одном направлении, то можем повернуть его вспять. Наличие одной механики, одной геометрии, не ведется учет погрешностей.

Стиль неклассической науки другой. Во-первых, в связи с применением науки в производстве возросла роль различных моментов, как исследование разрывных объектов, так как резкие скачки, прерывность процессов имеют важное значение. В связи с потребностями науки ведется изучение погрешностей, разработана теория погрешностей, задача вообще не считается решенной, если не исследовано, насколько она устойчива к возмущениям и малым изменениям ее параметров. При этом все оценки должны быть приведены.

Весь стиль науки перешел к точному логическому обоснованию своих результатов. Поэтому во всех науках применяется математический метод, метод моделирования и точных количественных оценок. Если это невозможно, то применяется мягкое математическое моделирование. Теория является более ценной, если в ней применены математические методы. Это предъявляет новые требования к ученым.

Главное же отличие состоит в системном подходе. Оно начало развиваться я со второй половины ХХ века. Это методологическое направление, основная задача которого состоит в разработке методов исследования и конструирования сложно организованных объектов - систем разных классов и типов. СП представляет собой определенный этап в развитии методов познания, методов исследовательской и конструкторской деятельности, способов объяснения и описания природы анализируемых или искусственно создаваемых объектов. Исторически он приходит на смену механицизму и по своим задачам противостоит этим концепциям. Наибольшее применение СП находит при исследовании сложных развивающихся объектов - многоуровневых, иерархических, как правило, самоорганизующихся, биологических, социологических, психологических, больших технических систем, экономических и др.

Дальнейшее развитие науки вносит существенные отклонения от классических ее канонов: открытие Ш. Кулоном (1736-1806) закона притяжения электрических зарядов с противоположными знаками, введение английским химиком и физиком М. Фарадеем (1791-1867) понятия электромагнитного поля, создание английским ученым Дж. Максвеллом (1831-1879) математической теории электромагнитного поля. В конце 19 – нач. 20 в. становление квантовой механики явно показало зависимость физической реальности от наблюдений. Это привело к переформулировке классического принципа автономности объекта от средств познания и введению принципа дополнительности в качестве основного методологического средства.

Основные открытия: Пьер Кюри и Мария Склодовская-Кюри в 1898 г. открывают явление называют радиоактивности. В 1897 г. английский физик Дж. Томсон (1856-1940) открывает составную часть атома - электрон, создает первую модель атома. В 1900 г. немецкий физик М. Планк (1858-1947) предложил новый подход: рассматривать энергию электромагнитного излучения величину дискретную, которая может передаваться только отдельными, хотя и очень небольшими, порциями - квантами. На основе этой гениальной догадки ученый не только получил уравнение теплового излучения, но она легла в основу квантовой теории. Английский физик Э. Резерфорд (1871-1937) экспериментально устанавливает, что атомы имеют ядро, в котором сосредоточена вся их масса, а в 1911 г. создает планетарную модель строения атома. Датский физик Н. Бор (1885-1962) создал квантовую модель атома (модель Резерфорда-Бора). В 1924 г. французский физик Луи де Бройль (1892-1987) выдвинул идею о двойственной, корпускулярно-волновой природе не только электромагнитного излучения, но и других микрочастиц. В 1934 г. французские физики Ирен (1897-1956) и Фридерик Жолио-Кюри (1900-1958) открыли искусственную радиоактивность. Но поистине революционный переворот в физической картине мира совершил великий физик-теоретик А. Эйнштейн (1879-1955), создавший специальную (1905) и общую (1916) теорию относительности, считая, что пространство и время органически связаны с материей и между собой. Тем самым задачей теории относительности становится определение законов четырехмерного пространства, где четвертая координата - время. Получает дальнейшее развитие генетика, в основе которой лежат законы Менделя и хромосомная теория наследственности американского биолога Т. Ханта (1866-1945). Не менее значительные достижения были отмечены в области астрономии. Астрономы и астрофизики пришли к выводу, что Вселенная находится в состоянии непрерывной эволюции. Создается наука, нацеленная на изучение и освоение космического пространства – космонавтика и кибернетика. На основе достижений физики развивается химия, особенно в области строения вещества. Создаются такие химические дисциплины, как физикохимия, стереохимия, химия комплексных соединений, начинается разработка методов органического синтеза. Евклидова метрика, неэвклидова геометрия (Лобачевского) и.т.д.


 

Яндекс.Метрика